TECHNICAL SPECIFICATION

Hydrozoa: Lightweight state
channels for Cardano

Hydrozoa: Lightweight state channels for Cardano

George Flerovsky Ilia Rodionov Peter Dragos
GeorgeFlerovsky (on Github) euonymos (on Github) dragospe (on Github)
Abstract

Hydrozoa is a dynamic, near-isomorphic multi-party state channel protocol. It allows a
group of peers to transact with one another directly outside of the Cardano blockchain
(on L2), significantly minimizing their activity on the Cardano blockchain (on L1). The
peers enjoy high throughput, instant finality, and low costs while transacting with each
other in this way. If the peers unanimously consent, they can add new peers, remove
existing peers, deposit funds from L1, and withdraw funds from L2.

Contributors
Adam Dean Alexander Nemish Pi Lanningham
Crypto2099 (on Github) nau (on Github) Quantumplation (on Github)
Sebastian Nagel

ch1bo (on Github)

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

Branch: (None) @ c28633a * Commit date: 2025-10-16

https://github.com/GeorgeFlerovsky
https://github.com/euonymos
https://github.com/dragospe
https://github.com/Crypto2099
https://github.com/nau
https://github.com/Quantumplation
https://github.com/ch1bo
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Contents

Overview

Llprotocol
L2state i e
L2 consensus protocol

1 L1 multisig regime

1.1 Utxostate v
1.2 Initialization
1.3 Deposit e
14 Refund
1.5 Settlement,
1.6 Finalization
1.7 Rollout. i e e

2 L1rule-based regime

21 Utxostate
2.1.1 Treasurystate
2.1.2 Disputestate,

2.2 Fallback to rule-based regime

2.3 Disputeresolution
231 Vote e
232 Tallyo
233 Resolve,

24 Treasury
241 Resolve,
242 Withdraw
243 Deinit oo oo oo

3 L2ledger

31 Ledgerrules
3.2 UtXoSet . . . v v v it e e e e e e e e e
33 Transaction v v v v v i vt
34 Withdrawal
35 Genesis e e

4 L2 blocks

41 Headstate.
4.2 Blockcreation

ii

Branch:

(None) @ c28633a * Commit date: 2025-10-16

4.3 Blockvalidation
4.4 Blockeffects e
441 Anyblock-L2effect.,
4.4.2 Minorblock-Lleffect
4.4.3 Major block—Lleffect
444 Finalblock—-Lleffect

5 L2 consensus protocol

51 ASSUMPLIONS v v vt e e e e e e
S.2 Setup ... e e
5.2.1 Parameters (ReqParams/AckParams)
5.2.2 Initialization (ReqInit/AckInit)
5.3 Ledgerrequests i i it e e e e
5.3.1 Transaction (ReqTx),
5.3.2 Withdrawal (ReqWithdrawal).
54 Consensusonblocks.
5.4.1 Minor block (RegMinor/AckMinor)
5.4.2 Major block (RegMajor /AckMajorl/AckMajor2)
5.4.3 Final block (RegFinal/AckFinall/AckFinal2).
55 Consensusonrefunds

5.5.1 Post-dated refund (ReqRefundLater /AckRefundLater)

5.5.2 Immediate refund (ReqRefundNow /AckRefundNow)

A Future work

Al Add/removepeers
A2 MintingonL2
A3 Observerscripts e
A.3.1 Alternative to withdraw-zero trick
A.3.2 Eliminate post-dated transactions
A3.3 Fragmentedtreasury
A4 Hydrozoa network and L2 interoperability

B Deterministic rollout algorithm

B.1 Settlementtransaction
B.2 Finalizationtransaction«
B.3 Rollouttransactions,

C Architecture

C1 Codebase e
C.2 Onchain script interdependencies
C.3 Processes and COMPONENTS v v v v v v v v v v e e e e eu

Bibilography

iii

35

........... 36
........... 36
........... 36
........... 37
........... 37
........... 37
........... 38
........... 38
........... 39
........... 39
........... 39
........... 40
........... 40
........... 40

42

........... 42
........... 43
........... 43
........... 43
........... 43
........... 44
........... 44

45

........... 45
........... 46
........... 47

48

........... 48
........... 48
........... 49

50

Branch: (None) @ c28633a * Commit date: 2025-10-16

Overview

Hydrozoa is a dynamic, near-isomorphic multi-party state channel protocol:

Multi-party state channel. Hydrozoa allows a group of peers to transact with one another
directly outside of the Cardano blockchain (on L2), significantly minimizing their activity on
the Cardano blockchain (on L1). The peers enjoy high throughput, instant finality, and low
costs while transacting with each other in this way.

Near-isomorphic. The peers’ transactions on L2 follow the same ledger rules as Cardano L1 to
the extent possible.!

Dynamic. If the peers unanimously agree, Hydrozoa allows them to add new peers or remove
existing peers from the group,” deposit funds from L1, and withdraw funds from L2.

Hydrozoa evolved out of Cardano’s Hydra Head protocol [10], dramatically simplifying the L1 smart
contract architecture and increasing flexibility.

L1 protocol

The Hydrozoa L1 protocol has two distinct operating regimes. Every head is initialized by its peers in
the multisig regime (§ 1), in which all funds and state are stored at a native script address controlled
by the unanimous multi-signature of its peers. Deposits into the head are created by sending utxos
to this address. They are either absorbed into the head’s treasury or refunded to depositors by
multi-signed transactions. Similarly, withdrawals are settled on L1 by multi-signed transactions
that send utxos out of the head’s treasury. Thus, the multisig regime’s L1 script defers entirely to
the L2 consensus protocol between the peers, which it perceives as a black box mechanism that
produces multi-signed transactions to modify the L1 state.

Ideally, a head spends its entire life cycle in the multisig regime, right up to the final transaction
that withdraws all remaining funds out of the head and de-initializes it. However, the multisig
regime may stall if the peers stop multi-signing transactions before reaching finalization.

In this case, the head moves to the rule-based regime (§ 2), in which unabsorbed deposits are
refunded and control over the head’s treasury transfers to a suite of Plutus scripts.

This regime focuses on the peers’ dispute about which L2 block is the latest among those confirmed
by the L2 consensus protocol and compatible with the L1 treasury state. The Plutus scripts arbitrate
the peers’ dispute and manage withdrawals from the treasury based on the resolved L2 block.

lUnfortunately, full equivalence is impossible because the result of the L2 transactions ultimately needs to be settled
on L1 by the peers, and Cardano’s ledger rules do not authorize the peers to perform certain actions (§ 3.1).

2Adding and removing peers is not currently specified in this document, but will be specified and implemented in the
final milestone of the Catalyst Fund 13 Hydrozoa project [4] (§ A.1).

Branch: (None) @ c28633a * Commit date: 2025-10-16

L2 ledger state and blocks

The Hydrozoa L2 ledger state (§ 3) consists of a set of active utxos and has three types of transitions:
* L2 transactions spend utxos and may produce new utxos.
* L2 withdrawals spend utxos but do not produce any new utxos.
* L2 genesis events produce new utxos but do not spend any utxos.

Among these, transactions and withdrawals are manually initiated on L2 by peers, while genesis
events are automatically inserted as L1 deposits are absorbed into the head’s treasury.

For efficiency, L2 events are batched into blocks (§ 4) so that the peers can reach consensus on an
entire block of L2 events at every round of the Hydrozoa L2 consensus protocol. Each block affirms
a sequence of L2 ledger events, rejects a separate set of L2 ledger events, and absorbs a set of L1
deposits. There are three types of blocks:

* A minor block only affirms L2 transactions. It does not affirm L2 withdrawals and does not
absorb any L1 deposits.

* A major block may withdraw some utxos and absorb some deposits.

* Afinal block is intended to be the last block confirmed by the peers for the head. It withdraws
the entire active utxo set and does not absorb any L1 deposits.

L2 consensus protocol

Hydrozoa’s L2 consensus protocol (§ 5):
* Broadcasts L2 transaction and withdrawal requests among the peers.

« Facilitates peer agreement on a growing common sequence of L2 ledger events grouped into
blocks.

* Promptly settles the L1 effects of a confirmed block if it affirms any L2 withdrawals or absorbs
any L1 deposits.

* Ensures that no funds get stranded as unabsorbed L1 deposits. If a deposit is determined not
to be absorbed into the head, it can always be refunded to the depositor.

* Ensures that no funds get stranded in the head’s treasury. If the peers stop responding to each
other, they can always retrieve their funds on L1 according to the latest block matching the
L1 treasury’s major version.

Peers take round-robin turns to create L2 blocks—every i*® block must be created by the i*® peer.

Branch: (None) @ c28633a * Commit date: 2025-10-16

Chapter 1

L1 multisig regime

Every Hydrozoa head uniquely corresponds to its peers’ public key hashes. In the L1 multisig regime,
the head’s native script simply requires signatures from all these public key hashes:"

headNativeScript :: Set PubKeyHash — Timelock

headNativeScript := AllOf . map Signature

We could end this chapter here, as no other conditions are enforced by L1 scripts in the multisig
regime. However, we will describe this regime’s expected states and transitions, which the Hydrozoa
L2 consensus protocol enforces while the peers engage with it (§ 5).?

1.1 Utxo state

In the multisig regime, a head’s entire L1 state resides in utxos at its native script address.

treasuryUtxo :: (OutputRef, Outputt’)
MultisigHeadState"" := ¢ depositUtxos : UtxoSet"'
rolloutUtxos :: UtxoSet!'
Multisig regme LD

|
|
I
I : .
I : : :
| |
: [treasury utxo] [deposit utxos [rollout utxos :
[. .
I : : :
I : : |
I : X
! I
! I

@head native seript

Figure 1.1: The L1 utxo state of the multisig regime.

IWe use similar notation to the Cardano ledger library [7], simplifying for readability. In that library, native scripts
are sometimes called “timelock” scripts.
20f course, the peers can always manually override the L2 consensus protocol by unanimous consent.

Branch: (None) @ c28633a * Commit date: 2025-10-16

Among these utxos, the head’s treasury utxo is uniquely identified as the one holding the head’s
beacon token:

1. The policy ID corresponds to the head’s native script (in minting policy form).

2. The first four bytes of the asset name are equal to the CIP-67 [1] prefix for class label 4937,
which corresponds to Hydrozoa head beacon tokens.®

3. The last 28 bytes of the asset name are equal to the Blake2b-224 hash (7,g) of the utxo nonce
spent in the head’s initialization transaction (§ 1.2).

No other utxo at the head’s native script address should hold any tokens that meet the policy ID
and CIP-67 prefix conditions above. In other words, there must only be one head at the address.*

The treasury utxo must have this datum:

utxosActive 11 RHs, UtxoSett?
MultisigTreasuryDatum := § versionMajor :: Ulnt
params :» Hszy ParamsConsensusL2

These fields are interpreted as follows:

active utxos. A 32-byte Merkle root hash (R73;) of the L2 ledger’s active utxo set, as of the
latest major L2 block settled on L1 (§ 1.5).

major version. The version number of the latest major L2 block settled on L1.
params. A 32-byte Blake2b-256 hash (7s,) of the head’s L2 consensus parameters (§ 4.1).
Non-treasury utxos at the head’s native script address are recognized as follows:

« A rollout utxo holds a rollout beacon token of the head’s minting policy, with CIP-67 prefix
7655.° It is a no-datum output of a settlement, finalization, or rollout transaction. It is
transient—quickly spent in a subsequent rollout transaction.

* A deposit utxo has a datum with the DepositDatum type (§ 1.3).

1.2 Initialization

Before initializing a Hydrozoa head, the peers should agree on the L2 consensus parameters they
want to use (§ 5). Initialization is achieved with a single transaction, multi-signed by all the peers,
that:

* Mints the head’s beacon token.

* Spends the utxo nonce reference by hash in the last 28 bytes of the beacon token’s asset name.

3We chose 4937 because it spells “HYDR” (short for Hydra/Hydrozoa) on a phone dial pad.

41t may seem redundant to use a 28-byte unique nonce in the beacon token’s asset name, given that only one head is
allowed per native script address at any given time. However, the unique nonce helps distinguish between different
heads that may exist at the same address across time.

SWe chose 7655 because it spells “ROLL” (short for rollout) on a phone dial pad.

Branch: (None) @ c28633a * Commit date: 2025-10-16

* Creates the treasury utxo at the head’s native script address, placing the beacon token into it
(with min-ADA) with this datum:

initMultisigTreasuryDatum :: Hs, ParamsHead — MultisigTreasuryDatum

utxosActive = RHz @
initMultisigTreasuryDatum initParams := { versionMajor = 0
params = initParams

treasury utxo

initiator's
utxo nonce mint head beacon/' empty L2 ledger state
token via major version O

_— native seript @ head native seript

urﬁquely identifies the head

Initialization

wulti-signed tx

Figure 1.2: The Hydrozoa head’s peers initialize its treasury utxo with an empty L2 ledger.

1.3 Deposit

Peers can deposit funds into a Hydrozoa head by sending utxos to its native script address, specifying
their instructions in this datum type:

address ;1 Address-?
datum :: Maybe Datum'?
DepositDatum := { deadline ;. PosixTime
refundAddress : Address‘'
refundDatum : Maybe Datum!'’

In this datum, the depositor instructs the peers to absorb the deposit into the treasury via a
settlement transaction (§ 1.5) before the deadline, or else to refund it to the depositor (§ 1.4) if it
will not be absorbed before the deadline.

The address and datum fields define the address and datum at which the utxo in the L2 ledger
should be created if the deposit is absorbed into the head’s treasury. The new utxo in the L2 ledger
should contain the same funds as the deposit utxo.

The refundAddress and refundDatum fields define the address and datum to which the deposit’s
funds should be sent on L1 if the deposit is refunded. The funds in the deposit must be sufficient to
pay for the refund transaction cost and create the refund utxo.

Branch: (None) @ c28633a * Commit date: 2025-10-16

o(e(aosi't utxo

user funds
deposit instructions
\\ \ @ head native seript,

Deposit

user-signed tx

Figure 1.3: A user places some funds and instructions into a deposit utxo for a Hydrozoa Head.

1.4 Refund

A refund is a transaction, multi-signed by all peers, that sends a deposit utxo’s funds to the deposit’s
refundAddress and refundDatum. While the peers follow the L2 consensus protocol, they will
automatically multi-sign and submit refund transactions for all deposits not absorbed before their
deadline.’

However, a depositor should obtain the other peers’ signatures for a post-dated refund transaction
before submitting the deposit transaction to Cardano. This transaction’s validity interval should
start at the deposit’s deadline. Doing so ensures that the depositor can still retrieve the deposited
funds if they have not been absorbed by the deadline, even if the other peers stop responding.

The L2 consensus protocol (§ 5.5) allows peers to obtain multi-signed post-dated refund transactions
before posting their deposits on L1. It also allows them to immediately refund any deposits that its
rules disqualify from being absorbed into the treasury.

o(eposit utxo refunded utxo

deposit instructions refund datum
@ head native seript, @ refund addres;
Refund

post-dated
wulti-signed tx

Figure 1.4: The peers refund the deposit if it isn’t absorbed into the treasury before the user’s
deadline.

1.5 Settlement

A settlement is a transaction, multi-signed by all peers, that absorbs deposits into a Hydrozoa
head’s treasury and pays out withdrawals out of the treasury based on a major L2 block (§ 4).”

5To minimize uncertainty from L1 rollbacks, the L2 consensus protocol will not attempt to absorb a deposit unless
sufficient time remains before its deadline. This safety margin is controlled by an offchain consensus parameter (§ 5.2.1).
A block is “major” if it confirms new deposits or withdrawals that were not confirmed in the preceding blocks.

Branch: (None) @ c28633a * Commit date: 2025-10-16

It also updates the versionMajor and utxosActive fields of the MultisigTreasuryDatunm to the
corresponding fields in the major L2 block while keeping the params field unchanged.

The absorbed deposit utxos are spent inputs in the settlement transaction. This means that Cardano’s
transaction size limit constrains the number of deposits settled per major L2 block.

On the other hand, the number of withdrawals per major L2 block is unconstrained. The withdrawn
utxos of the major L2 block are paid out via outputs of the settlement and rollup transactions, in
the ascending order of their output references in the L2 ledger.

The assignment of 1.2 withdrawn utxos to L1 outputs of the settlement and rollout transactions is
handled by Hydrozoa’s deterministic rollout algorithm (§ B). The settlement transaction greedily
pays out as many withdrawals as it can, using the transaction size remaining after fitting the deposit
inputs and the fixed transaction overhead. It outputs the remaining withdrawals’ aggregate funds as
a single rollout utxo, sent to the head’s native script address without a datum. Rollout transactions
iteratively pay out more utxos from the rollout utxo, until all withdrawals are settled (§ 1.7).

treasury utxo treasury utxo

old L2 ledger state
major version I
@ head native seript,

new L2 ledger state
major version (I+1)
@ head native script)

Settlement » payout utxos

withdrawal datum
multi-signed tx @ withdrawal addres

wint rollout token
via head

i ipt
deposit utxos native sere

o(eposit instructions
@ head native seript

Figure 1.5: The peers absorb some deposits and pay out some withdrawals from the head’s treasury.
A rollout utxo can be produced to defer payout of some withdrawals for later.

1.6 Finalization

The finalization transaction is similar to the settlement transaction, except that:
It burns the head’s beacon token.
+ It spends the head’s treasury utxo without outputting a new treasury utxo.
* It does not absorb any deposits.

It withdraws all utxos in the final L2 block’s ledger, including those in the active utxo set,
using rollout transactions if necessary.

Branch: (None) @ c28633a * Commit date: 2025-10-16

After the finalization transaction deals with the treasury and immediate/post-dated refund transac-
tions deal with the unabsorbed deposits, no trace of the Hydrozoa head should be left in the L1
ledger. Any other utxos that remain at the head’s native script address—assumed to be unrelated to
the head—can be manually spent by the peers.

treasury utxo
payout utxos

some L2 ledger state
some wajor version withdrawal datum

@ head native seript burn head @ withdrawal addres:
beacon token

Finalization ~mint rollout token

via head { rollout utxo
native script E

multi-signed tx

@ head native scriFF.:

change utxo
to head

initiator

Figure 1.6: The peers pay out all remaining funds from the head’s treasury. A rollout utxo can be
produced to defer the payout of some withdrawals for later.

1.7 Rollout

The rollout utxo is spent in a rollout transaction, paying out some more withdrawals, and outputting
a new rollout utxo with the aggregate funds of the rest of the withdrawals, if any remain. Further
rollout transactions spend the shrinking rollout utxo, until all the withdrawals have been paid out
(§B.3).

rollout utxo

payout utxos

withdrawal datum

@ head native seript 5142‘\ l’tﬁ“out token @ withdrawal addres:
it rollout utxo
not reproduced /

Rollout

multi-signed t. : .
u Signe x \ : ro”out utxo :

Figure 1.7: The peers pay out some withdrawals out of a rollout utxo, possibly leaving some for
later payout.

Branch: (None) @ c28633a * Commit date: 2025-10-16

Chapter 2

L1 rule-based regime

If the peers stop responding to each other in the L2 consensus protocol, the L1 rule-based regime
ensures they can still withdraw their funds from the Hydrozoa head’s treasury. It is less cost-efficient
and more complex than the multisig regime but serves as a fallback when L2 consensus breaks
down.

The fallback from the multisig regime to the rule-based regime pins the L1 treasury’s major version,
disqualifying any L2 blocks with lesser or greater major versions.! The rule-based regime then
proceeds via the following suite of Plutus scripts:

» The dispute resolution scripts (§ 2.3) arbitrate the peers’ dispute about the latest confirmed
L2 block matching the L1 treasury’s major version.

* The treasury spending validator (§ 2.4) awaits resolution and then manages withdrawals
from the head’s treasury based on the resolved L2 block.

The rule-based regime does not manage unabsorbed deposits left over from the multisig regime.
Depositors can retrieve them with post-dated refund transactions (§ 1.4) from the multisig regime.

2.1 Utxo state

In the rule-based regime, the head’s L1 state resides in utxos at two different UPLC-script addresses:

RUleBasedHeadstatel! - | freasuyuto (OutputRef, Output'')
“ | voteUtxos : UtxoSet!!

1Blocks with lesser major versions are disqualified because they assume a total treasury balance of funds that may
no longer exist due to deposits and withdrawals adding/removing funds from the treasury. Blocks with greater major
versions are disqualified because the fallback to the rule-based regime precludes their settlement transactions from
being confirmed on L1 (utxo contention over the multisig treasury).

Branch: (None) @ c28633a * Commit date: 2025-10-16

Rule-based regime @Q@@E

|
| o g

1 i C
[B c
' treasury utxo L vote utxos :
| Do :

L i s
b L c
e |
! I

@ treasury uple 5°";Pt§

Figure 2.1: The L1 utxo state of the rule-based regime.

2.1.1 Treasury state

In the rule-based regime, the head’s treasury utxo is at the head’s Plutus-based treasury address
(§ 2.4). It holds the head’s beacon token and all treasury funds from the multisig regime (§ 1.1).

The treasury utxo must have the following datum type, which defines its unresolved and resolved
states in the rule-based regime:

RuleBasedTreasuryDatum := Resolved ResolvedDatum

| Unresolved UnresolvedDatum

headMp :» Policyld
ResolvedDatum utxo.sActive it RH3y UtxoSet-?
version . (Ulnt, UInt)
params :» Hsz, ParamsConsensusL2
headMp ;. Policyld
disputeld :: AssetName
peers i [VerificationKey]
UnresolvedDatum := { peersN it Ulnt
deadlineVoting :: PosixTime
versionMajor ;2 Ulnt
params :: Hsy ParamsConsensusL2

The resolved treasury’s datum is the same as the multisig treasury’s datum, with these exceptions:
head MP. The policy ID of the head’s native script minting policy.

version. The full version of the resolved L2 block, which includes both the major and minor
version numbers. It replaces the versionMajor field of the multisig treasury.

The unresolved treasury’s datum fields are interpreted as follows:
head MP. The policy ID of the head’s native script minting policy.
dispute ID. The unique identifier used as the asset name of the dispute tokens (see below).
peers. The peers’ public keys.
n peers. The number of peers in the head.

deadline voting. A POSIX time before which votes can be cast in the dispute.

10
Branch: (None) @ c28633a * Commit date: 2025-10-16

major version. The treasury’s major version, pinned by the fallback to the rule-based regime.

params. A 32-byte Blake2h-256 hash (#3,) of the head’s L2 consensus parameters (§ 4.1).

2.1.2 Dispute state

Besides the treasury utxo, the head’s state in the rule-based regime also includes the vote utxos
for the dispute. Each of these utxos is at the head’s Plutus-based dispute address and holds one or
more of the dispute’s fungible tokens:

* The policy ID corresponds to the head’s native script (in minting policy form) (§ 1).

* The first four bytes of the asset name are equal to the CIP-67 [1] prefix for class label 3477,
which corresponds to Hydrozoa head dispute tokens.”

» The last 28 bytes of the asset name are equal to the Blake2b-224 hash (#,g) of the multisig
treasury utxo spent in the head’s fallback to the rule-based regime (§ 2.2).

Each vote utxo has this datum type:

key : Ulnt

VoteDatum = link ;1 Ulnt
peer :: Maybe PubKeyHash
voteStatus :: VoteStatus

VoteStatus := NoVote | Vote VoteDetails

utxosActive 1 RH3, UtxoSett? }

VoteDetails := . .
versionMinor : Ulnt

These fields are interpreted as follows:
key. An integer that uniquely identifies the vote utxo.
link. Aninteger that uniquely references another vote utxo by its key.

peer. The public-key hash of the peer (if any) who can cast a vote in this utxo. It is only empty
for the default vote utxo (with key 0), which contains a vote that is automatically cast at the
fallback to the rule-based regime (§ 2.2).

vote status. Either no vote or a vote for a minor L2 block.

utxos active. A 32-byte Merkle root hash (R73;) of the L2 ledger’s active utxo set, as of the
block voted by the peer.

minor version. The minor version of the minor L2 block voted by the peer. This block’s major
version must match the major version that the treasury had when it fell back to the rule-based
regime.

Collectively, the vote utxos constitute a linked list data structure on L1.

2We chose 3477 because it spells “DISP” (short for dispute) on a phone dial pad.

11
Branch: (None) @ c28633a * Commit date: 2025-10-16

2.2 Fallback to rule-based regime

The L2 consensus protocol pairs every multisig treasury utxo it creates with a post-dated fallback
the treasury to the rule-based regime (§ 5).

While L2 consensus holds, the peers store these post-dated transactions without submitting them.
However, if the multisig utxo is not spent by the time its corresponding post-dated transaction
becomes valid, then L2 consensus is assumed to have stalled. In that case, every peer should trigger
the fallback to the rule-based regime by submitting the transaction to Cardano.

treasury utxo treasury utxo

unresolved
Same wmajor version
@ treasury serip

some L2 ledger state
Some major version
@ head native seript,

default vote utxo

Fallback —__mint one vote token
vi-a l«em{ - unassigneo{
post-dated native seript vote for minor version 0
multi-signed tx same L2 ledger state

mint N vote tokens @ O(?walte resolution serip

via head
native seript

peers' vote utxos

(one utxo assigned to each peer)
empty vote
@ dispute resolution seript

Figure 2.2: The peers arrange for the head to fall back to the rule-based regime after a timeout, in
case they fail to agree on any new settlement transactions to keep the multisig regime alive.

The transaction body is as follows:
1. Spend the multisig treasury utxo (multisigTreasury). Let mt be its datum.
2. Let headMp be the head’s native script minting policy.

3. LetdeadlineVoting be the voting deadline for this dispute, as defined by the L2 consensus
for this fallback to the rule-based regime.

4. Let disputeld be the CIP-67 prefix for 3477, concatenated with the Blake2b-224 hash (#3)
of the multisigTreasury output reference.

5. Let peers be a list of the peers’ public keys and peersN be its length.?

6. Mint (peersN + 1) dispute tokens of (headMp, disputeId).

3The indices of the peers list (and all other lists in this specification) start from 1.

12
Branch: (None) @ c28633a * Commit date: 2025-10-16

7. Create the rule-based treasury utxo (ruleBasedTreasury), containing the funds and beacon
token from multisigTreasury and this datum:

headMp = headMp

disputeld = disputeld

peers = peers
FallbackTreasuryDatum := Unresolved { peersN = peersN

deadlineVoting deadlineVoting
versionMajor mt.majorVersion
params = mt.params

8. Create the default vote utxo, containing a vote for the major L2 block’s active utxo set:

key =0
link = 0<peersN?1:0
defaultVoteDatum := { peer = Nothing
utxosActive = mt.utxosActive
voteStatus = Vote . .
versionMinor = 0

9. For i iterated from 1 to peersN, create a vote utxo with one dispute token and this datum:

key = i

link i<peersN?(i+1):0
peer Just (Hsy peers|i])
voteStatus NoVote

initVoteDatum i :=

2.3 Dispute resolution

During the voting period of a dispute, each peer gets one opportunity to cast their vote on the latest
minor L2 block confirmed by the L2 consensus protocol before it stalled. When all votes are cast or
the voting period ends, the dispute’s state can be resolved to a single vote utxo containing the latest
block among the votes.

Voting is handled by the Plutus-based spending validator of the dispute address. We describe its
redeemers in the rest of this section.

13
Branch: (None) @ c28633a * Commit date: 2025-10-16

2.3.1 Vote

vote utxo vote utxo

assigned to peer K unassigned
empty vote \ ¢ Vo'i:e c vote for some minor version

@ dispute resolution seript lfl’;?: °e J corresponding L2 ledger state

multi-sign : : :
L2 bloek) \ @ dispute resolution ser e
Vote
v
7
4
-, peer-K-signed tx

treasury utxo .

unresolved
Sowme major version
@ treasury serip

Figure 2.3: A peer casts its vote for the latest confirmed L2 block version from the multisig regime.

Replace the input’s no-vote status with an abstention or a valid vote for a block. Conditions:
* Verify the vote inputs:
1. Let voteOutref be the output reference of the input being spent.

2. Let voteInput be the input being spent. There must not be any other spent input
matching voteOutref on transaction hash.

3. The voteStatus field of voteInput must be NoVote.
4. The transaction must be signed by the peer field of voteInput, if it is non-empty.

5. Let (headMp, disputeId) be the minting policy and asset name of the only non-ADA
tokens in voteInput.

* Verify the treasury reference input:
6. Let treasury be the only reference input matching voteOutref on tx hash.
7. A head beacon token of headMp and CIP-67 prefix 4937 must be in treasury.

8. headVMp and disputeId must match the corresponding fields of the Unresolved datum
in treasury.

9. The transaction’s time-validity upper bound must not exceed the deadlineVoting field
of treasury.

* Verify the redeemer:

14
Branch: (None) @ c28633a * Commit date: 2025-10-16

10. Let voteRedeemer be an optional redeemer argument with this type:*

MinorBlockL1Effect :

{blockHeader :: BIockHeaderLZ}

multisig . [Signature]

blockNum : Ulnt

blockType ;1 BlockType“?
BlockHeader'2 -= timeCreation : PosixTime

versionMajor : Ulnt

versionMinor : Ulnt

utxosActive 1 RH3, UtxoSet-?

11. If voteRedeemer is provided, then both of these must hold:

(a) Themultisig field of voteRedeemer must have signatures of the blockHeader field
of voteRedeemer for all the public keys in the peers field of treasury.

(b) The versionMajor field must match between treasury and voteRedeemer.

* Verify the vote output:

12. Let voteOutput be an output with the same number of (headMp, disputeId) tokens and
same address as voteInput. It must not hold any other non-ADA tokens.

13. If voteRedeemer is provided, the voteStatus field of voteOutput must be a Vote match-
ing voteRedeemer on the utxosActive and versionMinor fields.

14. All other fields of voteInput and voteOutput must match.

2.3.2 Tally

vote utxo vote utxo
vote for minor version J \ unassigned
corresponding L2 ledger state rall vote for max {3, I3
s, . . al
@ dispute resolution seript \ corresponding L2 [edgel’ state
@ disgute resolution serip
‘[‘a“y
vote utxo Tally single-signed tx

vote for minor version J'
corresponding L2 ledger state
@ dispute resolution seript

Figure 2.4: Collapse two votes into one, keeping the latest confirmed L2 block version among them.

Collapse two votes into one, keeping the latest confirmed L2 block version among them. Conditions:

¢ Verify the vote inputs:

4These types are defined in § 4 and repeated here.

15
Branch: (None) @ c28633a * Commit date: 2025-10-16

. Let tallyRedeemer be a redeemer argument with this type:

continuingOutref :: OutputRef
TallyRedeemer =
removedOutref : OutputRef

Let continuingInput and removedInput be spent inputs with the respective output
references of tallyRedeemer.

. continuingInput and removedInput must match on address.

continuingInput and removedInput must have non-ADA tokens of only one asset class,
which must match between them and satisfy both of the following:

(a) The minting policy (headMp) must be a native script.

(b) The asset name (disputelId) must have the CIP-67 prefix 3477.

. The key field of removedInput must be greater than the key field and equal to the 1ink

field of continuingInput.

There must be no other spent inputs from the same address as continuingInput or
holding any tokens of headMp.

* Verify the treasury reference input:

7.

If the voteStatus of either continuingInput or removedInput is NoVote, all of the
following must be satisfied:

(a) Let treasury be a reference input holding the head beacon token of headMp and
CIP-67 prefix 4937.

(b) headMp and disputeId must match the corresponding fields of the Unresolved
datum in treasury.

(c) The deadlineVoting field of treasury must not exceed the transaction’s time-
validity lower bound.

* Verify the vote output:

8.

10.

11.

Let continuingQOutput be an output with the same address and the sum of all tokens
(including ADA) in continuingInput and removedInput.

. The voteStatus field of continuingOutput must match the highest voteStatus of

continuingInput and removedInput, totally ordered as follows:

Ya, b € VoteDetails :
a.minorVersion < b.minorVersion —

NoVote < Vote a < Vote b

The 1ink field of removedInput and continuingOutput must match.

All other fields of continuingInput and continuingOutput must match.

16
Branch: (None) @ c28633a * Commit date: 2025-10-16

2.3.3 Resolve

The sole remaining vote utxo can be spent when the treasury utxo is spent. Conditions:

1.

2.

2.4

Let voteInput be the input being spent.

Let (headVp, disputeId) be the minting policy and asset name of the only non-ADA tokens in
votelnput.

. Let treasury be a spent input that holds a head beacon token of headVp and CIP-67 prefix

4937.

headMp and disputelId must match the corresponding fields of the Unresolved datum in
treasury.

Treasury

The treasury spending validator awaits the dispute’s resolution and adopts the active utxo set of
the resolved L2 block. Peers can then withdraw funds from the treasury by creating utxos on L1
and showing Merkle proofs of equivalent utxos being removed from the treasury’s active utxo set.

We describe the treasury spending validator’s redeemers in the rest of this section.

2.4.1 Resolve

treasury utxo treasury utxo

unresolved ~ resolved

wajor version I Resolve contains (N+1) vote tokens

@ treasury serip \ R luti L2 ledger state of verson I.J
esolution

@ treasury serip

vote utxo single-signed tx

Resolve

contains (N+1) vote tokens

vote for minor version J

L2 ledger state of version I.J
@ dispute resolution serip

Figure 2.5: Resolve the peers’ dispute by applying the latest confirmed L2 block to the treasury
utxo. Funds will now be withdrawable based on that block’s L2 ledger state.

Resolve the treasury’s state based on the sole remaining vote utxo. Conditions:

1.

2.

Let treasuryInput be the input being spent.

Let headMp, disputeld, peersN, and versionMajor be the corresponding fields of treasury-
Input.

Let voteInput be a spent input with (peersN + 1) tokens of (headMp, disputeId)and no other
non-ADA tokens.

17
Branch: (None) @ c28633a * Commit date: 2025-10-16

. Let treasuryOutput be an output with the same address as treasuryInput and the sum of

all tokens (including ADA) in treasuryInput and voteInput.

. Let voteStatus be the corresponding field of voteInput. voteStatus must be Vote.
. Let versionMinor be the corresponding field in voteStatus.

. The version field of treasuryOutput must match (versionMajor, versionMinor).

. voteStatus and treasuryOutput must match on utxosActive.

. treasuryInput and treasuryOutput must match on all other fields.

2.4.2 Withdraw

treasury utxo treasury utxo

resolved

resolved [N Ehdraw version I.J
version I.J (with BLS updated L2 ledger state
some (2 ledger s‘taAte membership proof excluding withdrawals
@ treasury serip for witl«dmwals)\‘ Withd | @ treasury serip
0 rawal

single—signed tx

payout utxos

withdrawal datum
@ withdrawal address,

.
.

Figure 2.6: Withdraw funds from the treasury via membership proof of utxos in the resolved L2
ledger state. Update the resolved L2 ledger state to exclude those utxos.

Withdraw treasury funds and update its active utxo set accordingly. Conditions:

1.

2.

Let treasuryInput be the input being spent.

Let headVMp be the corresponding field in treasuryInput.

. Let headId be the asset name of the only headVp token in treasuryInput with CIP-67 prefix

4937.

Let withdrawals be a list of triples provided as a redeemer argument. Each triple contains
an output reference, an L2 output, and a Merkle inclusion proof. The proof shows a path
from some Merkle root hash to the L2 output at the output reference.

[(OutputRef, Output-?, MerkIeProof)]

. Let treasuryOutput be the first transaction output. It must hold the (headMp, headId) beacon

token.

. Let outputsRemaining be a mutable variable initialized to the transaction’s outputs, exclud-

ing treasuryOutput.

. Let valueTotal be a mutable variable initialized to the value of treasuryQutput.

18
Branch: (None) @ c28633a * Commit date: 2025-10-16

8. Let rootHash be a mutable variable initialized to the utxosActive of treasuryInput.
9. For each triple (outref, outputlL2, proof) in withdrawals:

(a) Let outputL1 be the first element in outputsRemaining, which must exist.

(b) outputLi and outputL2 must match on the value, datum, and script fields.

(c) outputLland outputL2 mustmatch onthe addr field by payment credential and staking
reference.

(d) Update outputsRemaining by excluding outputLl.
(e) Update valueTotal by adding the value of outputL1.

(f) Update rootHash by applying the Merkle library’s delete function with the triple:

delete :: RH 3, UtxoSet-? — (OutputRef, Output'?, Proof) — RH3, UtxoSet

10. valueTotal must match the value of treasuryInput.

11. rootHash must match the utxosActive of treasuryOutput.

2.4.3 Deinit

treasury utxo change utxos

resolved or unresolved — Deinit
version I.J (burn all vote and head -
some LtZY |eo(zfr s::te beacon tokens) — _
Sty =TE Deinit
_______________________ Deinit Mu|ti~signep(tx
k. (burn all vote
vote utxos o, tokens)

possibly some votes E 4
@ dispute resolution seript,’ ¢ E

Figure 2.7: The peers deinitialize the head’s treasury and clean-up any remnants of head state.

De-initialize the head, removing all traces of it. Conditions:®
1. Let treasury be the input being spent.
2. Let headVp be the corresponding field in treasury.

3. All headVp tokens in treasury with CIP-67 prefixes of 3477 and 4937 must be burned.

5This redeemer does not require the treasury’s active utxo set to be empty, but it implicitly requires the transaction to
be multi-signed by all peers to burn the headMp tokens. Thus, the peers can use this redeemer to override the treasury’s

spending validator with their multi-signature.

19
Branch: (None) @ c28633a * Commit date: 2025-10-16

Chapter 3

L2 ledger

The L2 ledger state has this type:
LedgerState™? := { utxosActive : UtxoSet"? }

These fields are interpreted as follows:

utxos active. The set of utxos (§ 3.2) that can be spent in transactions or withdrawn. These
utxos are created by L2 transactions and genesis events.

3.1 Ledger rules

Hydrozoa’s L2 ledger rules are the same as Cardano’s ledger rules,' but with the following additions:

No staking or governance actions. Hydrozoa’s consensus protocol is not based on Ouroboros
proof-of-stake, and its governance protocol is not based on Cardano’s hard-fork-combinator
update mechanism. Furthermore, Hydrozoa’s L1 scripts cannot authorize arbitrary staking
or governance actions on behalf of users. For this reason, staking and governance actions
cannot be used in L2 transactions.?

No pre-Conway features. Hydrozoa does not need to maintain backward compatibility with
pre-Conway eras. L2 utxos cannot use bootstrap addresses or Shelley addresses with Plutus
versions older than Plutus V3.

Public key hash credentials, native scripts, and Plutus scripts at or above V3 are allowed.

No datum hashes in outputs. Hydrozoa requires all utxo datums to be inline, which avoids
the need to index the datum-hash to datum map from transactions’ datum witnesses.

No minting or burning of tokens. Hydrozoa’s L1 scripts are not authorized to mint or burn
arbitrary user tokens onchain, so enforcing such events is impossible when settling the L2
state on L1. Thus, L2 transactions cannot mint or burn tokens.>

This specification is pinned to this version of the Cardano ledger rules: [7].

2In future work (§ A.3.1), Hydrozoa may implement support on L2 for observer scripts (CIP-112 [2]) as a better
alternative for dApps that currently rely on withdraw-zero staking validators for performance optimization.

3In future work (§ A.2), Hydrozoa may implement support for minting and burning on L2.

20
Branch: (None) @ c28633a * Commit date: 2025-10-16

No collateral on L2. Phase-2 scripts (e.g. Plutus) can potentially have arbitrary resource costs
(up to the Cardano’s ExUnits limits for txs), but block producers do not receive normal fees
from transaction that fail phase-2 validation. To cover the resource costs incurred for such
failing phase-2 validations and to prevent denial-of-service attacks using such transactions,
Cardano requires collateral to be provided in all transactions containing phase-2 scripts.

However, in Hydrozoa’s unanimous consensus protocol, any peer can deny service simply by
stopping its responses to L2 messages. Furthermore, a peer can disconnect from the source
of too many transactions failing phase-2 validation, mitigating the incurred resource costs.
Therefore, Hydrozoa does not need collateral inputs, fees, and outputs on L2.

POSIX and time-validity intervals. Hydrozoa uses POSIX for time-validity interval bounds on
L2. An L2 transaction or withdrawal can be included in a block’s valid events if the block’s
creation time falls within the transaction or withdrawal’s time-validity interval.

3.2 Utxo set

Conceptually, a utxo set is a set of transaction outputs tagged with unique references to their origins.
In practice, we equivalently represent a utxo set as a map from output reference to output:

UtxoSet™? := Map OutputRef Output-?
= {(ki : OutputRef, v; :: Output?) | Vi#j. ki # kj}

An output reference is a tuple that uniquely identifies an output by a hash of the transaction that
created it and its index among that transaction’s outputs:

id . TxId
OutputRef :={ |
index : Ulnt

An output is a tuple describing a bundle of tokens, data, and a script that have been placed at an
address in the ledger:

addr : Address‘?
NEY value : Value

| datum : Datum‘?
script i Maybe Scriptt?

Outpu

Network-2
PaymentCredential
StakeReference

Address™? :

Datum'? := NoDatum | Datum Data

Script'? := TimelockScript Timelock
| PlutusScript PlutusVersion“? PlutusBinary
PlutusVersion“? := PlutusV3

21
Branch: (None) @ c28633a * Commit date: 2025-10-16

3.3 Transaction

An L2 transaction spends one or more utxos in utxosActive, replacing them with zero or more
new utxos. The rules for Hydrozoa’s L2 transactions are the same as Cardano’s ledger rules for L1
transactions but with the additions listed in § 3.1.

Conveniently, we can avoid forking Cardano’s ledger rules library to implement these additional
rules in Hydrozoa. Instead, we express them as requirements for specific transaction fields to be
omitted or restricted to a narrower selection of values.

The hydrozoa node software should reject (with an error message) L2 transactions that violate these
requirements, while peers should ignore ReqTx messages (§ 5.3.1) that broadcast such transactions.

In the following type definition, we use these notational conventions:

* Some fields are already optional in Cardano transactions, with suitable defaults provided
when omitted. We indicate these by prefixing their field types with a question mark (7).

* We indicate fields that must be omitted in Hydrozoa L2 transactions by prefixing their field
names with an empty-set symbol (2).

TxL2 =

TxBody"? :=

body ;1 TxBody-?

wits i TxWitst2
is_valid : Bool
auxiliary_data :: ? TxMetadata

spend_inputs

@ collateral_inputs
reference_inputs
outputs

@ collateral_return

@ total_collateral

@ certificates

@ withdrawals

fee

validity_interval
required_signer_hashes
@ mint
script.integrity_hash
auxiliary_data_hash
network_id

@ voting_procedures

@ proposal_procedures
@ current_treasury_value
@ treasury_donation

22

Set OutputRef

? Set OutputRef

? Set OutputRef
[Output‘?]

? Output‘?

? Coin

? [Set Certificate]

? Map RewardAccount Coin
Coin

? ValidityInterval

? [VKeyCredential]

? Value

? ScriptIntegrityHash

? AuxiliaryDataHash

? Network"?

? VotingProcedures

? Set ProposalProcedure

? Coin

? Coin

Branch: (None) @ c28633a * Commit date: 2025-10-16

addr_tx_wits i ? Set (VKey, Signature, VKeyHash)

@ boot_addr_tx_wits ? Set BootstrapWitness
TxWits™? := { script_tx_wits :: ? Map ScriptHash Script*2

@ data_tx_wits :: ? TxDats

redeemer_tx_wits n ? Redeemers

Cardano’s ledger rules do not allow omitting the collateral inputs, collateral return, and
total_collateral fieldsin transactions containing Plutus scripts. Thus, we deactivate the following
Cardano ledger rules when validating L2 transactions:

* Minimum collateral amount
* Non-empty collateral inputs (if Plutus scripts are used)

* Collateral balancing:

Z lovelace(collateral_inputs) = lovelace(collateral_return) + total_collateral

3.4 Withdrawal

A withdrawal is an L2 ledger event that spends one or more utxos in utxosActive but does not
output any utxos. The L2 ledger rules for withdrawals are similar to transactions but with the
following modifications:

No outputs. Withdrawals cannot create utxos in utxosActive.
No fees. Withdrawals do not pay transaction fees.
No metadata. Withdrawals cannot contain transaction metadata.

We can express the rules for L2 withdrawals (Tx"?") as further restrictions on the fields of L2
transactions (Tx"?):*

body :: TxBody-?W
plaw . | wits i TxWitsh? T2
“ | is.valid ;2 Bool -
@ auxiliary_data ? TxMetadata

“Here, “omitting” the outputs and fee fields means setting them to an empty list and zero, respectively.

23
Branch: (None) @ c28633a * Commit date: 2025-10-16

spend_inputs ;2 Set OutputRef
@ collateral_inputs i ? Set OutputRef
reference_inputs :: ? Set OutputRef
@ outputs ;. [Output“?]
@ collateral_return ;. ? Outputt?
o total_collateral :: ? Coin
@ certificates = ? [Set Certificate]
@ withdrawals :: ? Map RewardAccountCoin
o fee : Coin

TxBody*" := { validity_interval : ? ValidityInterval
required_signer_hashes ? [VKeyCredential]
@ mint :: ? Value
script.integrity_hash " ? ScriptIntegrityHash
auxiliary_data_hash " ? AuxiliaryDataHash
network_id ;. ? Network“?
@ voting_procedures :: ? VotingProcedures
@ proposal_procedures ? Set ProposalProcedure
@ current_treasury_value :: ? Coin
@ treasury_donation i ? Coin

Cardano’s ledger rules do not allow the fee to be zero. Thus, we deactivate the following Cardano
ledger rules when validating L2 withdrawals, in addition to the rules deactivated for L2 transactions:

¢ Minimum fee amount

* Transaction balancing:

Zvalue(inputs) + mint = Zvalue(outputs) + fee

3.5 Genesis

L2 genesis is a ledger event automatically inserted into the ledger’s history immediately following
the affirmed events of a confirmed major L2 block. It adds new utxos to the utxosActive set
without spending any utxos:

Genesis™ = { utxosAdded : UtxoSet“? }

These L2 utxos uniquely correspond to the L1 absorbedDeposits of the major block (§ 4):
output reference:

id. The Blake2h-256 hash (73;) of absorbedDeposits. Incidentally, this is also the genesis
event’s unique ID (TxId).

index. The corresponding L1 deposit’s positional index in depositsAbsorbed.
output:
addr. The address field in the corresponding L1 deposit’s datum.

value. The value of the corresponding L1 deposit.

24
Branch: (None) @ c28633a * Commit date: 2025-10-16

datum. The datum field in the corresponding L1 deposit’s datum.

script. Empty.

25
Branch: (None) @ c28633a * Commit date: 2025-10-16

Chapter 4

L2 blocks

It would be inefficient for a head’s peers to reach a consensus on each L2 ledger event individually.
Instead, they reach a consensus on an entire block of L2 ledger events at every Hydrozoa L2
consensus protocol round.

All L2 blocks have this type:

Blockl2 { header : BlockHeader'? }
body : BlockBody"?
blockNum @ Ulnt
blockType ;1 BlockType“?

BlockHeader'? = timeCreation :: PosixTime
versionMajor : Ulnt
versionMinor :: Ulnt
utxosActive 1 RH3, UtxoSet-?

BlockType"? := Minor | Major | Final

eventsValid ;1 Sequence (EventTypeb?, TxId)
eventsInvalid ;2 Map TxId EventType“?
depositsAbsorbed :: Sequence OutputRef

BlockBody"® :

EventType'? := Transaction | Withdrawal | Genesis

Each block affirms a sequence of L2 ledger events, rejects a separate set of L2 ledger events, and
absorbs a set of L1 deposits. The block’s header contains a Merkle root hash of the active utxo set
that results from applying the affirmed L2 ledger events to the latest confirmed L2 ledger state.

Depending on the types of L2 ledger events affirmed by the block and the peers’ intent to continue
operating the head, there are three kinds of L2 blocks in Hydrozoa:

Minor block. A block that neither affirms any L2 withdrawals nor absorbs any L1 deposits. It
does not affect the head’s L1 utxo state in the multisig regime and only affects the L2 ledger
state’s active utxo set. They may affect the L1 utxo state in the rule-based regime.

Major block. A block that affirms some L2 withdrawals or absorbs some L1 deposits. It implicitly
affirms an L2 genesis event corresponding to its absorbed L1 deposits, appended to the end
of its affirmed L2 event sequence. As soon as the peers confirm it, it immediately affects the

26
Branch: (None) @ c28633a * Commit date: 2025-10-16

head’s L1 utxo state via the L1 settlement and rollout transactions that mirror the utxos it
adds and withdraws from the L2 ledger.

Final block. A block with which the peers finalize the head, resulting in an empty L2 ledger. It
implicitly affirms withdrawals for the active utxo set remaining after its affirmed L2 ledger
events sequence. It does not absorb any L1 deposits.

Blocks are numbered consecutively by blockNum, and they are versioned by versionMajor and
versionMinor numbers:

+ The notional initial block has major and minor versions set to zero."

A minor block keeps its predecessor’s major version and increments the minor version.

* A major block increments the major version and resets the minor version to zero.

The final block increments the major version and resets the minor version to zero.

A block’s the timeCreation field indicates the time it was created.

4.1 Head state

Every peer requires access to an up-to-date source of this information:

blocksConfirmedL2 : Sequence Block"?
eventsL2 :: Table Event-?
finalizing ;' Bool
HeadState = params : ParamsConsensusITZ. -

peers : [(PubKeyHash, VerificationKey)]
stateL1 :: MultisigHeadState'
statel.2 ;1 LedgerState'?
timeCurrent ;2 PosixTime
blockLatencyTolerance : UDiffTime
depositMarginMaturity : UDiffTime

ParamsConsensuslL? = { depositMarginExpiry : UDiffTime
multisigRegimeKeepAlive :: UDiffTime
multisigRegimeTimeout :: UDiffTime
timeReceived : PosixTime
eventld » TxId

Event? := { eventType :: EventType‘?

event n TR
blockNum . Maybe Ulnt

These fields are interpreted as follows:

blocks confirmed L2. The sequence of all L2 blocks confirmed by the L2 consensus protocol.?

IThe initial block is never actually created or explicitly confirmed by the peers. It is the same for all hydrozoa heads;
its only effect is initializing the empty L2 ledger state. We only care about it because its major and minor versions are
Zero.

2In practice, it may be acceptable to remove blocks when they are settled on L1 with sufficient finality.

27
Branch: (None) @ c28633a * Commit date: 2025-10-16

events L2. The table of all L2 events witnessed by the peer but not rejected by any confirmed
block.? The events must be unique on eventId and sorted in the ascending order of timeRe-
ceived:

time received. The POSIX time at which the peer received the event.

event ID. The transaction ID corresponding to the event’s effect on the L2 active utxo set.
event type. The L2 event is a transaction, withdrawal, or genesis event.

event. The transaction representing the event’s effect on the L2 active utxo set.

block number. The block number of the block (if any) that includes the event, regardless
of whether the block is confirmed.

finalizing. A boolean indicator of whether the peers want to finalize the head immediately. Its
initial value is False, and it becomes True when a peer expresses a wish to close the head.

peers. The peers’ public key hashes and verification keys, which must be unique and sorted in
ascending order of public key hash. Each peer’s integer ID in the head is assigned according
to the position of the key’s public key hash in this list.

params. The head’s parameters:

block latency tolerance. During validation, a new block’s creation time must not deviate
from the peer’s current time by more than this non-negative time duration.

deposit margin maturity. After an L1 deposit is created on L1,* the peers must wait for
this non-negative time duration before attempting to absorb it into the head’s treasury.

deposit margin expiry. If no more than this non-negative time duration is left before an
L1 deposit’s deadline, the peers must not attempt to absorb it into the head’s treasury.

multisig regime keep-alive. Ifthis non-negative time duration has passed since the latest
confirmed major block’s creation, the next block must be major.

multisig regime timeout. If this non-negative time duration has passed since the latest
confirmed major block’s creation, the head can fall back to the rule-based regime with
this block’s major version.

state L1. The peer’s view of the head’s L1 utxo state in the multisig regime (§ 1.1).°
state L2. The head’s L2 ledger state (§ 3) as of the latest confirmed block.

time current. The peer’s current POSIX time, synchronized via the NTP protocol [9].

31t may be acceptable to keep only a small buffer of these events corresponding to several recently confirmed blocks.

4An L1 deposit’s creation time corresponds to the slot number of the block that includes the transaction that outputs it.
While this may be ill-defined at first due to chain forks, we expect it to stabilize by the time L1 deposit matures enough to
be absorbed—that is the whole point of maturation!

5The head’s L1 state is only needed to create/validate major and final blocks, which cannot be done when the head is
in the L1 rule-based regime.

28
Branch: (None) @ c28633a * Commit date: 2025-10-16

4.2 Block creation

Given a peer’s head state, create a new block as follows:

1. Initialize the variables and arguments (immutable by default):
(a) Let block be a mutable variable initialized to an empty Block™?,
(b) Let previousBlock be the latest block in blocksConfirmedL2.
(c) LetpreviousMajorBlock be the latest major block in blocksConfirmedL2.
(d) LetutxosActive be a mutable variable initialized to statelL2.utxosActive.
(e) LetutxosAdded be a mutable variable initialized to an empty UtxoSet™2.
(f) Let utxosWithdrawn be a mutable variable initialized to an empty UtxoSet™2,

2. Setblock.timeCreation to timeCurrent.

3. For each non-genesis L2 event x in eventsL2, where x.blockNum is empty:®

(a) Ifx.eventTypeis Transaction,apply x.event toutxosActive using Hydrozoa’sledger
rules for L2 transactions (Tx“?). If it is valid:

i. Append (x.eventId, x.eventType) to block.eventsValid.
ii. Update utxosActive to the result of this transition.

(b) Ifx.eventType is Withdrawal, apply x.event to utxosActive using Hydrozoa’s ledger
rules for L2 withdrawals (Tx™?"). If it is valid:

i. Append (x.eventId, x.eventType) to block.eventsValid.
ii. Update utxosActive to the result of this transition.
iii. Insert the spent inputs of x.event into utxosWithdrawn.
(c) Otherwise, insert (x.eventId, x.eventType) into block.eventsInvalid.
4. If finalizingis False, for each deposit d in stateLl.depositUtxos:

(a) Skip to the next deposit if this fails to hold:
(block.timeCreation > d’.timeCreation + depositMarginMaturity) A

(block.timeCreation < d’.deadline — depositMarginExpiry)

(b) Otherwise:

i. Insert d into block.depositsAbsorbed.

5The non-genesis filter is just a self-consistency check—the L2 consensus protocol does not provide any way for a
genesis event to be appended to eventsL2 with an empty blockNum. A genesis event can only be appended by a valid
block.

29
Branch: (None) @ c28633a * Commit date: 2025-10-16

ii. Insert this utxo into utxosAdded:’

outputRef = { id = RH3, block.depositsAbsorbed }
index := elemIndex d block.depositsAbsorbed
addr = d.address

output _ value = d.value
datum := d.datum
script = @

5. If finalizing is True:
* Move all utxos from utxosActive to utxosWithdrawn.
6. Setblock.blockType according to the first among these conditions to hold:
(a) Final if finalizing is True.

(b) Major if utxosAdded is non-empty, utxosWithdrawn is non-empty, or:

block.timeCreation > previousMajorBlock.timeCreation + multisigRegimeKeepAlive

(c) Minor, otherwise.
7. Set the rest of the block header:
(a) Setblock.blockNum to (previousBlock.blockNum + 1).
(b) Setblock.utxosActive to the Merkle root hash of utxosActive.
(c) If block.blockType is Major or Final, both of these:
i. Setblock.versionMajor to (previousBlock.versionMajor + 1).
ii. Setblock.versionMinor to zero.
(d) If block.blockType is Minor, both of these hold:
i. Setblock.versionMajor to previousBlock.versionMajor.
ii. Setblock.versionMinor to (previousBlock.versionMinor + 1).

8. Return block, utxosActive, utxosAdded, and utxosWithdrawn.

7Actually, the output reference of each L2 utxo in utxosAdded can only be constructed after the iteration through
stateL1.depositUtxos is complete. In practice, this may require a second pass through utxosAdded to fill in the blanks.

30
Branch: (None) @ c28633a * Commit date: 2025-10-16

4.3 Block validation

From a peer’s perspective, a new block’s validity has three states:
Valid. The block is valid and should be confirmed by the peer.

Not yet known. The peer has detected an error that could be resolved if the peer waits and
tries again—e.g., the peer may soon receive an L2 event that was included in the block.

Invalid. The peer has detected an error that cannot be resolved by waiting.
Given a peer’s head state, validate a new block as follows:®
1. Initialize the variables and arguments (immutable by default):
(a) Letblock be the new block being validated.
(b) Let previousBlock be the latest block in blocksConfirmedL2.
(c) Let previousMajorBlock be the latest major block in blocksConfirmedL2.
(d) LetutxosActive be a mutable variable initialized to statelL2.utxosActive.

(e) LetutxosAdded be a mutable variable initialized to an empty UtxoSet™?.

(f) Let utxosWithdrawn be a mutable variable initialized to an empty UtxoSet™?.

2. Return if this fails to hold:

block.timeCreation € [timeCurrent + blockLatencyTolerance)

3. For each event x in eventsValid:
(@) If x.eventIdis notin eventsL2, return|NotYetKnown |
(b) If block.blockType is Minor and x.eventType is Withdrawal, return .

(c) Ifx.eventTypeis Transaction, apply x.event toutxosActive using Hydrozoa’sledger
rules for L2 transactions (Tx"?):

i. Ifitis invalid, return| Invalid]
ii. Update utxosActive to the result of this transition.

(d) Ifx.eventType isWithdrawal, apply x.event to utxosActive using Hydrozoa’s ledger
rules for L2 withdrawals (Tx"?"):

i. Ifit is invalid, return | Invalid]

ii. Update utxosActive to the result of this transition.

iii. Insert the spent inputs of x.event into utxosWithdrawn.

(e) If x.eventType is Genesis, return .

4. For each event y in eventsInvalid:

8In the block validation procedure, “return” statements immediately break execution.

31
Branch: (None) @ c28633a * Commit date: 2025-10-16

(a) If y.eventIdisnotin eventsL2, return .

(b) Ify.eventTypeis Transaction, applyy.event toutxosActive using Hydrozoa’sledger
rules for L2 transactions (Tx"?). If it is incorrectly marked as valid, return | Invalid]

(c) If y.eventType is Withdrawal, apply y.event to utxosActive using Hydrozoa’s ledger
rules for L2 withdrawals (Tx"?"). If it is incorrectly marked as valid, return | Invalid].

5. If finalizingis False, for each deposit d’ in depositsAbsorbed:

(a) Ifd’ isnotin statelLl.depositUtxos, return .

(b) Let d be the corresponding deposit in stateLl.depositUtxos.
(c) Return if this fails to hold:

(block.timeCreation > d.timeCreation + depositMarginMaturity) A
(block.timeCreation < d.deadline — depositMarginExpiry)

(d) Insert this utxo into utxosAdded:

outputRef = { id = RH3, block.depositsAbsorbed }
index := elemIndex d block.depositsAbsorbed
addr = d.address

output _ value := d.value
datum = d.datum
script = @

6. If finalizingis True:
(a) If depositsAbsorbed is non-empty, return | Invalid].
(b) Move all utxos from utxosActive to utxosWithdrawn.

7. Return if block.blockType is not set according to the first among these to hold:
(@) Final if finalizing is True.

(b) Major if utxosAdded is non-empty, utxosWithdrawn is non-empty, or:

block.timeCreation > previousMajorBlock.timeCreation + multisigRegimeKeepAlive

(c) Minor, otherwise.
8. Return if any of these fails to hold:
(a) block.blockNum matches (previousBlock.blockNum + 1).
(b) block.utxosActive matches the Merkle root hash of utxosActive.
(c) If block.blockType is Major or Final, both of these hold:
i. block.versionMajor matches (previousBlock.versionMajor + 1).

ii. block.versionMinor is zero.

32
Branch: (None) @ c28633a * Commit date: 2025-10-16

(d) If block.blockType is Minor, both of these hold:
i. block.versionMajor matches previousBlock.versionMajor.
ii. block.versionMinor matches (previousBlock.versionMinor + 1).

9. Return , along with utxosActive, utxosAdded, and utxosWithdrawn.

4.4 Block effects

A confirmed block’s L2 effect is immediate, and it is handled by a common procedure for all block
types.

On the other hand, a confirmed block’s L1 effect varies by its block type, and a peer cannot directly
apply it to its head state. Instead, it must be executed by submitting L1 transactions and waiting for
the L1 Ouroboros consensus protocol to confirm the transactions.

4.4.1 Any block - L2 effect

Let utxosActive, utxosAdded, and utxosWithdrawn be the sets produced by the block creation
or validation procedure for a given block (block) and head state. Upon confirmation of block by
the peers, it immediately affects the head state as follows:

1. Update statelL2.utxosActive to utxosActive.

2. For each L2 event in block.eventsValid, set the blockNum of the corresponding event in
eventsL2 to block.blockNum.

3. For each L2 event in block.eventsInvalid, remove the corresponding event in eventsL2.

4. If utxosAdded is non-empty, then append this genesis event to eventsL2:

Genesis"? { utxosAdded := utxosAdded }

4.4.2 Minor block - L1 effect

A confirmed minor block’s L1 effect is the block’s header, multi-signed by all peers:

. L2
MinorBlockL1 Effect ::{ blockHeader :: BlockHeader }

multisig = [(VerificationKey, Signature)]

This effect is manually triggered if a peer uses it as a redeemer to vote during the rule-based regime’s
dispute (§ 2.3). If the dispute resolution process resolves with this minor block, then the rule-based
treasury will allow funds to be withdrawn according to this minor block’s active utxo set.

33
Branch: (None) @ c28633a * Commit date: 2025-10-16

4.4.3 Major block - L1 effect

A confirmed major block’s L1 effect is a package of L1 transactions, multi-signed by all peers:

settlement i T
MajorBlockL1Effect := { rollouts a [TXH)
postDatedFallback :: Tx!!

These L1 transactions are as follows:

settlement. The L1 settlement transaction (§ 1.5) that absorbs the block’s absorbedDeposits
and pays out as many utxos corresponding to the block’s utxosWithdrawn as fit within Car-
dano’s L1 transaction constraints.

rollouts. The L1 rollout transactions (§ 1.7) that pay out utxos corresponding to the rest of the
block’s utxosWithdrawn.

post-dated fallback. An L1 transaction that transitions the multisig treasury to the rule-based
regime with the block’s major version (§ 2.2). The transaction’s time-validity interval starts at
the major block’s creation time, shifted forward by the multisigRegimeTimeout parameter.

All peers must immediately submit the settlement and rollouts to Cardano L1.

If the post-dated fallback becomes valid, all peers must immediately submit it.

4.4.4 Final block - L1 effect
A confirmed final block’s L1 effect is a package of L1 transactions, multi-signed by all peers:

finalization : TxY }

FinalBlockL1Effect := 1
rollouts o [TxH']

These L1 transactions are as follows:

finalization. The L1 finalization transaction (§ 1.6) that pays out as many utxos corresponding
to the block’s utxosWithdrawn as fit within Cardano’s L1 transaction constraints. It does not
absorb any L1 deposits.

rollouts. The L1 rollout transactions (§ 1.7) that pay out utxos corresponding to the rest of the
block’s utxosWithdrawn.

All peers must immediately submit the finalization and rollouts to Cardano L1.

34
Branch: (None) @ c28633a * Commit date: 2025-10-16

Chapter 5

L2 consensus protocol

L2 consensus between a Hydrozoa head’s peers is achieved via a peer-to-peer protocol that:

Broadcasts L2 transaction and withdrawal requests among the peers.

Facilitates peer agreement on a growing common sequence of L2 ledger events grouped into
blocks.

Promptly settles the L1 effects of a confirmed block if it affirms any L2 withdrawals or absorbs
any L1 deposits.

Ensures that no funds get stranded as unabsorbed L1 deposits. If a deposit is determined not
to be absorbed into the head, it can always be refunded to the depositor.

Ensures that no funds get stranded in the head’s treasury. If the peers stop responding to each
other, they can always retrieve their funds on L1 according to the latest block matching the
L1 treasury’s major version.

Peers take round-robin turns to create L2 blocks—every i** block must be created by the i*® peer.

While participating in the L2 consensus protocol, each peer locally maintains this head state:’

blocksConfirmedL2 :: Sequence Block!?
eventsL2 ;1 Table Event'?
finalizing :: Bool
HeadState = params : ParamsConsensusITZ. .
peers . [(PubKeyHash, VerificationKey)]
statel1 :: MultisigHeadState!
statel.2 i1 LedgerStatel?
timeCurrent ;2 PosixTime

IThis type is defined in § 4.1 and repeated here.

35
Branch: (None) @ c28633a * Commit date: 2025-10-16

5.1 Assumptions

The L2 consensus protocol relies on these assumptions:
1. The peers have pre-established pairwise communication channels with each other.

2. Every network message received from a peer is checked for authentication. Implementing
this specification requires finding a suitable method to authenticate the communication
channels or individual messages.

3. Every peer is promptly and correctly notified about all relevant L1 transactions, and L1
consensus finality and liveness properties always hold.

4. The lifecycle of a Hydrozoa head never crosses any L1 protocol update boundaries.?

5.2 Setup

During setup, the initiator proposes the L2 consensus parameters for the head, collects the peers’
verification keys, and drafts the L1 initialization transaction for the head. The other peers respond
to the initiator’s requests, broadcasting their responses to all peers.

When all the peers agree on this information, they submit the multi-signed initialization transaction.

5.2.1 Parameters (RegParams /AckParams)

To start the setup process, the initiator must broadcast a request for the other peers to adopt the
initiator’s proposed L2 consensus parameters:>

RegParams := { params :: ParamsConsensusL2 }
blockLatencyTolerance ;. UDiffTime
depositMarginMaturity ;. UDiffTime

ParamsConsensusL2 := { depositMarginExpiry : UDiffTime
multisigRegimeKeepAlive :: UDiffTime
multisigRegimeTimeout :: UDiffTime

On receiving a ReqParaumns, if the receiving peer accepts the proposed parameters, the peer must
update the params in its head state to the proposed parameters and broadcast an acknowledgment
that contains the peer’s verification key:

AckParams := { vkey :: VerificationKey }

The initiator must do the same immediately after sending the ReqParams request.

On receiving a AckParams, the receiving peer must update the peers list in its head state to include
the received verification key and its Blake2b-256 (#{32) hash. This list must have unique verification
keys and be sorted in ascending order of public key hash. Furthermore, it must always include the
peer’s own verification key and public key hash.

2These boundaries are often announced in advance, before the hard-fork combinator event, so Hydrozoa peers should
be capable of avoiding them by finalizing existing heads and delaying the initialization of new heads.
3The L2 consensus parameters are defined in § 4.1 and repeated here.

36
Branch: (None) @ c28633a * Commit date: 2025-10-16

5.2.2 Initialization (ReqInit/AckInit)

On receiving all parameter acknowledgments from the peers, the initiator must draft an L1 initial-
ization transaction (§ 1.2) for the head, using the peers’ public key hashes, and broadcast it to the
peers:

ReqInit := { initTx :: Tx"' }

On receiving a ReqInit, the receiving peer must verify that the initialization transaction meets the
conditions in § 1.2 and uses a native script (§ 1) parametrized by all the peers’ public key hashes,
corresponding to the peers list its head state. If it is valid, the peer must broadcast a signature of
the initialization transaction:

AckInit - { initTxId = TxId }

signature : Signature
The initiator must do the same immediately after sending the ReqInit request.

On receiving an AckInit, the receiving peer must verify that signature is a valid signature of the
initialization transaction by the sender’s verification key. If so, the peer must attach the signature
to the initialization transaction.

Each peer must submit the initialization transaction when all required signatures are attached.

5.3 Ledger requests

Any peer can broadcast a request to the other peers, asking them to witness a new L2 transaction
or withdrawal. The peers do not explicitly acknowledge the request, but a future block must affirm
the L2 transaction or withdrawal if it is valid relative to the block creator’s head state.

5.3.1 Transaction (ReqTx)

To submit a new L2 transaction to the head, the submitting peer must broadcast this request:

ReqTx := { tx :: Tx" }

On receiving a ReqTx at time timeReceived, if the transaction body hash is valid, the receiving
peer must append the following L2 event to the eventsL2 table in in its head state (§ 4.1):

timeReceived timeReceived

eventld = tx.txld
eventType = Tranasction
event = tx
blockNum = 0

The submitter must do the same immediately after sending the request.

No acknowledgment is required. Peers other than the next block creator should not attempt to
validate this L2 transaction at this time.

37
Branch: (None) @ c28633a * Commit date: 2025-10-16

5.3.2 Withdrawal (ReqWithdrawal)

To submit a new L2 withdrawal to the head, the submitting peer must broadcast this request:

RegWithdrawal := { withdrawal :: Tx-2W }

On receiving a ReqWithdrawal at time timeReceived, if the transaction body hash is valid, the
receiving peer must append the following L2 event to the eventsL2 table in its head state (§ 4.1):

timeReceived timeReceived

eventld = w.txId
eventType = Withdrawal
event = W
blockNum = O

The submitter must do the same immediately after sending the request.

No acknowledgment is required. Peers other than the next block creator should not attempt to
validate this L2 withdrawal at this time.

5.4 Consensus on blocks

If there are unconfirmed L2 events and no new block awaits the peers’ confirmation, the next block
must be created and sent to the peers for confirmation. The i*® peer has the exclusive right to create
every i*® block:

rightfulBlockCreator peersN blockNum := mod blockNum peersN

To create a new block, apply the block creation procedure (§ 4.2) to the block creator’s head state.
Depending on the new block’s type, the block creator must broadcast it in either a RegMinor,
RegMajor, or ReqFinal request to the other peers.

Each recipient must validate the new block relative to the recipient’s head state. If the new block is
valid, the recipient must broadcast a corresponding acknowledgment (AckMinor, AckMajori, or
AckFinall) to the other peers.

The block creator must broadcast a corresponding acknowledgment of the new block to the other
peers immediately after broadcasting the new block.

When the new block is major or final, acknowledgment proceeds in two rounds.* When a peer
has received the first acknowledgment (AckMajorl or AckFinall) from all peers, the peer must
broadcast a corresponding second acknowledgment (AckMajor2 or AckFinal?2).

When a peer receives all acknowledgments for a block, the peer must consider the block and all its
affirmed events to be confirmed. The peer must update its head state as described in § 4.4.

4Major and final blocks require two acknowledgment rounds to ensure block confirmation because they have
multiple effects requiring the peers’ signatures. The first round collects signatures for all effects except for the L1
settlement/finalization transaction. The second round collects signatures for the L1 settlement/finalization transaction.
Doing so prevents any peer from withholding their signature for an undesirable block effect after obtaining all signatures
for a desirable block effect. Since none of the other effects can happen without the L1 settlement transaction, requiring it
last ensures all peers sign all effects.

38
Branch: (None) @ c28633a * Commit date: 2025-10-16

Both the AckMinor and AckMajor2 responses have a nextBlockFinal boolean flag, with which
each peer can indicate whether the peer wishes the next block (after the currently pending block)
to be the head’s final block. If this flag is True in any of the acknowledgments of a confirmed block,
all peers must set the finalizing variable to True in the head state, and the next block creator
must create a final block.

5.4.1 Minor block (RegMinor [AckMinor)

A block creator’s broadcast of a new minor block contains the block:

ReqMinor := { block :: Block }

A peer’s acknowledgment of a minor block contains the block header signed by the peer:

blockHeader :: BlockHeader
AckMinor = { signature ;2 Signature
nextBlockFinal :: Bool

5.4.2 Major block (RegMajor/AckMajorl/AckMajor?2)

A block creator’s broadcast of a new major block contains the block;

ReqMajor := { block :: Block }

A peer’s first acknowledgment of a major block identifies the block by its header and contains the
recipient’s signatures for the block’s rollout and post-dated fallback transactions:

blockHeader :: BlockHeader
AckMajor1 := { rollouts ;. [Signature]
postDatedFallback : Signature

A peer’s second acknowledgment of a major block identifies the block by its header and contains
the recipient’s signature for the block’s settlement transaction:

blockHeader :: BlockHeader
AckMajor2 := { settlement : Signature
nextBlockFinal :: Bool

5.4.3 Final block (ReqFinal /[AckFinall/AckFinal2)

A block creator’s broadcast of a new major block contains the block;

ReqFinal := { block :: Block }

A peer’s first acknowledgment of a major block identifies the block by its header and contains the
recipient’s signatures for the block’s rollout transactions:

AckFinal1 ::{ blockHeader : BlockHeader }

rollouts . [Signature]

39
Branch: (None) @ c28633a * Commit date: 2025-10-16

A peer’s second acknowledgment of a major block identifies the block by its header and contains
the recipient’s signature for the block’s finalization transaction:

AckFinal2 :={ blockHeader :: BlockHeader }

finalization :: Signature

5.5 Consensus on refunds

To ensure that deposited funds never get stranded, every depositor must obtain a multi-signed
post-dated refund transaction from the head’s peers before sending the L1 deposit utxo to the head’s
native script address.

Similarly, the peers may sometimes determine that an L1 deposit will not be absorbed into the
head—e.g., insufficient time before the deposit deadline, disruption in L2 block consensus. In those
cases, the peers should attempt to multi-sign and submit an immediate refund transaction for the
deposit as a courtesy to the depositor.

5.5.1 Post-dated refund (ReqRefundLater [AckRefundLater)

A request for a post-dated refund of an L1 deposit must contain the unsigned transaction that will
create the L1 deposit:

d itTx 2 TxY
ReqRefundLater ;={ epositTx X }

index . Ulnt

On receiving a RegRefundLater, the receiving peer must:
1. Verify that the deposit transaction creates a valid L1 deposit (§ 1.3) at the specified index.

2. Construct an L1 refund transaction that spends the L1 deposit and sends its funds to the
refundAddress and refundDatum, with time validity interval starting at the deadline.

3. Broadcast the peer’s signature for the post-dated refund transaction:

AckRefundLater = { deposit :: OutputReference }

signature :: Signature

On receiving all peer signatures for the post-dated refund, the deposit caches it and submits the
deposit transaction.

5.5.2 Immediate refund (ReqRefundNow /AckRefundNow)
A request for an immediate refund must contain the list of L1 deposit utxos to be refunded:
RegRefundNow := { deposits :: [OutputReference] }

On receiving a RegRefundNow, the receiving peer must:

1. Verify that each of the L1 deposit utxos exists on L1 and that no more than depositMargin-
Expiry time duration is left until the deposit’s deadline.

40
Branch: (None) @ c28633a * Commit date: 2025-10-16

2. For each L1 deposit, construct an L1 refund transaction that spends it and send a correspond-
ing output to its refundAddress and refundDatum. This transaction’s time-validity interval
is unbounded.

3. Broadcast the peer’s signatures for the immediate refund transactions:

AckRefundNow = “ deposit :: OutputReference H

signature : Signature

On receiving all the peers’ signatures for the immediate refund, every peer must submit it.

41
Branch: (None) @ c28633a * Commit date: 2025-10-16

Appendix A

Future work

In this appendix, we describe some interesting further developments of the Hydrozoa protocol
beyond the current specification. Of these, only adding/removing peers (§ A.1) is formally in scope
for the Catalyst Fund 13 Hydrozoa project [4], but we will look for opportunities to pursue this
future work where we can.

A.1 Add/remove peers

The Cardano community identified dynamic peer membership as a highly desirable feature for
running Hydrozoa heads. Indeed, the ability to add or remove a peer from a head by unanimous
consent would significantly boost the flexibility of operating them. It will likely improve the chances
that peers stay in the multisig regime, as any peer wanting to exit could do so in an orderly fashion
with minimal disruption, rather than resorting to finalization or dispute resolution.

In terms of the L1 protocol currently described in this specification (§§ 1 and 2), changing the peers
list in the multisig regime' can be as simple as a single multi-signed transaction that:

1. Spends the head’s multisig treasury utxo.
2. Burns the head’s beacon token.
3. Mints a new head beacon token with a minting policy corresponding to the new peer list.

4. Sends the multisig treasury utxo input’s funds and the newly minted head beacon token to
the head native script address corresponding to the new peer list. The datum is the same as
in the treasury input.

The main challenge of implementing this feature involves adapting the L2 protocol (§ 5) to negoti-
ate this transition seamlessly. Pragmatically, we have decided to postpone this until the current
specification is implemented. However, we are committed to implementing this feature in the final
milestone of the Hydrozoa Catalyst project [4].

IChanging the peers list in the rule-based regime is infeasible because their inability to reach a timely consensus is
the reason why the head is in this regime.

42
Branch: (None) @ c28633a * Commit date: 2025-10-16

A.2 Minting on L2

Many dApps on Cardano rely on custom tokens to authenticate their internal state,” but Hydrozoa
currently precludes minting and burning on L2. Supporting this feature opens up a range of complex
issues that have not yet yielded satisfactory solutions in discussions [8].

Fortunately, the Midgard team is exploring a promising approach to this problem. The Hydrozoa
team is in close contact with the Midgard team and will likely adapt Midgard’s solution to L2 minting
when it is more fully developed.

A.3 Observer scripts

Cardano CIP-112 [2], which is expected to arrive on Cardano mainnet in an upcoming hardfork,
introduces observer scripts to Cardano’s ledger rules. Observer scripts could revolutionize dApps
on a scale similar to the reference inputs/scripts of the Vasil hardfork.

A.3.1 Alternative to withdraw-zero trick

Many dApps on Cardano rely on withdraw-zero staking validators to optimize performance,® but
this specification currently precludes staking actions on L2. However, observer scripts allow dApp
developers to implement the same functionality without using withdraw-zero staking validators,
reducing overhead and complexity.

Instead of conjuring a complex workaround to enable staking actions on L2, Hydrozoa will wait for
CIP-112 to be implemented and merged to Cardano mainnet.

A.3.2 Eliminate post-dated transactions

Currently, Hydrozoa relies on multi-signed post-dated transactions for two features:
* Refunding a deposit after its deadline (§ 2.2).
* Fallback to the rule-based regime after the multisig regime timeout (§ 2.2).

These transactions must be multi-signed because they spend utxos from the head’s multisig native
address. However, they are only intended as a fallback when the peers fail to reach a timely
consensus on the preferred alternatives. For this reason, the L2 consensus protocol requires them
to be post-dated; in this way, they can be multi-signed ahead of time while the peers can still reach
a timely consensus.

Still, managing these post-dated contingencies incurs a significant communication and storage
overhead for Hydrozoa heads. Luckily, observer scripts will allow Hydrozoa to replace the post-
dated transactions by adding a RequireObserver clause to the head’s native script. With such a
clause, the native script can selectively forward its validation to a Plutus-based observer script.

ZFor example, see the Cardano Swaps peer-to-peer DeFi protocol [3].
3For example, Hydrozoa itself uses a withdraw-zero staking validator for performance optimization when tallying
votes in the rule-based regime (§ 2.3).

43
Branch: (None) @ c28633a * Commit date: 2025-10-16

With observer scripts, we can redefine the head’s native script as follows:

headNativeScript :: Set PubKeyHash — Timelock

AlIOf (map Signature keys)

headNativeScript keys := AnyOf
caciativescript keys ny RequireObserver (headObserverScriptHash keys)

headObserverScriptHash :: Set PubKeyHash — 3, PlutusScript

This new observer script can classify its spent input as the treasury utxo or a deposit utxo. Then, it
can decide whether to allow the rule-based fallback or refund by comparing the transaction’s time
validity lower bound to the datum. In other words, it allows a rule-based exit from a state managed
by a native script.

A.3.3 Fragmented treasury

Cardano’s ledger rules limit the serialized size of a utxo’s value field based on the Alonzo-era
MaxValSize protocol parameter. In other words, a Hydrozoa head that stores its entire treasury in
a single utxo is limited in the variety of asset classes it can hold. For example, a million ADA will fit,
but a million different NFTs might not fit in a single utxo.

Given the somewhat transient nature of state channels and the small numbers, we do not expect
this constraint to affect most typical Hydrozoa use cases. However, if this becomes a problem,
we could explore how to fragment a Hydrozoa head’s treasury across multiple utxos. Observer
scripts are helpful for fragmented treasuries because they facilitate an orderly fallback of treasury
fragments to the rule-based regime.

A.4 Hydrozoa network and L2 interoperability

From the recent article “Cardano Layer 2 Interoperability: Midgard and Hydrozoa” [5]:

@ Midgard and Hydrozoa are Layer 2 (L2) solutions at the forefront of Cardano’s next
- scalability era. Interoperability between them (and other L2s) mitigates their relative

weaknesses while reaping the full benefits of their strengths. Midgard provides
massive throughput and a non-multisig consensus protocol ideal for many smart-
contract-based dApps to co-exist on a single ledger with vast userbases, but it suffers
from delayed settlement for withdrawals to L1. A Hydrozoa head provides instant
finality and low cost for its peers’ transactions and withdrawals, but only its peers
benefit from the protocol’s full security guarantees.
An eUTXO0-enhanced hashed timelock contract (HTLC) could work well as a universal
mechanism of L2-L2 transfers of funds and information. An HTLC transfer from
Midgard to a Hydrozoa head can eliminate the Midgard settlement delay for any peer
of the Hydrozoa head. HTLC transfers within a network of Hydrozoa heads liberate
the flow of funds and information within the network, with Midgard, and with other
L2s that support HTLCs (incl. Bitcoin Lightning).
Standardizing L2-L2 transfers, L2 state queries, and wallet integration can mitigate
the UX fragmentation problem as Cardano pursues complementary L2 solutions.

44
Branch: (None) @ c28633a * Commit date: 2025-10-16

Appendix B

Deterministic rollout algorithm

The Hydrozoa protocol strives to generate L1 transactions deterministically whenever they require
consensus from all peers (i.e., in the multisig regime). This determinism allows the L2 consensus
protocol and block validation procedure to focus on the essential contents of blocks without getting
distracted in verifying the minutiae of the blocks’ effects expressed as L1 transactions.

This determinism is easy to accomplish for a refund (§ 1.4) and the fallback to the rule-based
regime (§ 2.2) because each of those transactions has a bounded number of inputs/outputs that are
guaranteed to fit within Cardano’s transaction size limit. On the other hand, settlement of a major
block on L1 (§ 1.5) may require a large number of L2 withdrawals to be paid out on L1, such that
one or more rollout transactions may be needed to handle its overflow of L1 outputs. Finalization
(§ 1.6) is also unconstrained in the number of L2 withdrawals it can pay out.

This appendix describes the deterministic algorithm that assigns withdrawn L2 utxos to the outputs
of a settlement/finalization transaction and its rollout transactions.

B.1 Settlement transaction

Suppose we have a treasury utxo with sufficient funds, and we need to settle a major L2 block on
L1 such that all these conditions are satisfied:

1. Absorb a given set of L1 deposit utxos (depositsAbsorbed) in the ascending order of output
reference. The number of deposits in this set is constrained such that the deposits (as spent
inputs) fit well within Cardano’s transaction size limit.

2. Pay out L1 utxos equivalent to a given set of L2 withdrawn utxos (utxosWithdrawn) in the
ascending order of output reference. The number of withdrawals in this set is unconstrained.

3. Spend the treasury utxo and reproduce it with the total deposited funds added and the total
withdrawn funds removed.

The deterministic algorithm’s goal for the settlement transaction is to absorb depositsAbsorbed
and to pay out as many L2 withdrawn utxos in utxosWithdrawn as possible, deferring payout for
the rest to subsequent rollout transactions. It greedily achieves this goal by following these steps:

1. Let txFixedPart be a partial transaction draft that meets conditions (1) and (3) above and
has signatures from all peers.

45
Branch: (None) @ c28633a * Commit date: 2025-10-16

2. For i ranging from 1 to (size utxosWithdrawn), define a candidate transaction as the variation
of txFixedPart that meets all these additional conditions:

(a) Let utxosWithdrawnPrefix be the firsti L2 utxos in utxosWithdrawn.

(b) Produce L1 utxos equivalent to utxosWithdrawnPrefix. Equivalence means that each
L2 utxo has a corresponding L1 utxo that contains the same funds and datum at the
same address.

(c) Ifiislessthan (size utxosWithdrawn), produce an L1 rollout utxo that contains an empty
datum, a newly-minted rollout beacon token (§ 1.1) and the rest of the funds that need
to be paid out (value (utxosWithdrawn \ utxosWithdrawnPrefix)).

3. Select the largest-i candidate that fits within Cardano’s transaction size limit.

If the settlement transaction produces an L1 rollout utxo, then the deterministic algorithm meets
the rest of condition (2) above via one or more rollout transactions (§ B.3).

B.2 Finalization transaction

Suppose we have a treasury utxo with sufficient funds, and we need to finalize the head on L1 such
that all these conditions are satisfied:

1. Absorb no L1 deposit utxos (depositsAbsorbed := @).

2. Pay out L1 utxos equivalent to a given set of L2 withdrawn utxos (utxosWithdrawn) in the
ascending order of output reference. The number of withdrawals in this set is unconstrained.

3. Spend the treasury utxo but do not reproduce it.

The deterministic algorithm’s goal for the finalization transaction is to pay out as many L2 with-
drawn utxos in utxosWithdrawn as possible, deferring payout for the rest to subsequent rollout
transactions. It greedily achieves this goal by following these steps:

1. Let txFixedPart be a partial transaction draft that meets conditions (1) and (3) above and
has signatures from all peers.

2. Foriranging from 1 to (size utxosWithdrawn), define a candidate transaction as the variation
of txFixedPart that meets all these additional conditions:

(a) Let utxosWithdrawnPrefix be the firsti L2 utxos in utxosWithdrawn.

(b) Produce L1 utxos equivalent to utxosWithdrawnPrefix. Equivalence means that each
L2 utxo has a corresponding L1 utxo that contains the same funds and datum at the
same address.

(c) Ifiislessthan (size utxosWithdrawn), produce an L1 rollout utxo that contains an empty
datum, a newly-minted rollout beacon token (§ 1.1), and the rest of the funds that need
to be paid out (value (utxosWithdrawn \ utxosWithdrawnPrefix)).

3. Select the largest-i candidate that fits within Cardano’s transaction size limit.

If the finalization transaction produces an L1 rollout utxo, then the deterministic algorithm meets
the rest of condition (2) above via one or more rollout transactions (§ B.3).

46
Branch: (None) @ c28633a * Commit date: 2025-10-16

B.3 Rollout transactions

Suppose we have an L1 rollout utxo with sufficient funds, and we need to construct one or more
rollout transactions that collectively meet all these conditions:

1. Pay out L1 utxos equivalent to a given set of L2 withdrawn utxos (utxosWithdrawn) in the
ascending order of output reference. The number of withdrawals in this set is unconstrained.

2. Spend the L1 rollout utxo.
3. Burn the rollout beacon token in the L1 rollout utxo.

The deterministic algorithm’s goal for each rollout transaction is to pay out as many L2 with-
drawn utxos in utxosWithdrawn as possible, deferring payout for the rest to subsequent rollout
transactions. It greedily achieves this goal by following these steps:

1. Let txFixedPart be a partial transaction draft that meets condition (2) above and has signa-
tures from all peers.

2. Foriranging from 1 to (size utxosWithdrawn), define a candidate transaction as the variation
of txFixedPart that meets all these additional conditions:

(a) Let utxosWithdrawnPrefix be the firsti L2 utxos in utxosWithdrawn.

(b) Produce L1 utxos equivalent to utxosWithdrawnPrefix. Equivalence means that each
L2 utxo has a corresponding L1 utxo that contains the same funds and datum at the
same address.

(c) Ifiislessthan (size utxosWithdrawn), produce an L1 rollout utxo that contains an empty
datum, the rollout beacon token (§ 1.1), and the rest of the funds that need to be paid
out (value (utxosWithdrawn \ utxosWithdrawnPrefix)).

(d) Otherwise, burn the rollout beacon token.
3. Select the largest-i candidate that fits within Cardano’s transaction size limit.

The deterministic algorithm recursively generates a sequence of rollout transactions until all three
of the above conditions are met.

47
Branch: (None) @ c28633a * Commit date: 2025-10-16

Appendix C

Architecture

C.1 Codebase

Hydrozoa uses a single mono-repository called cardano-hydrozoa/hydrozoa [6]. Tentatively, we
will organize the codebase into the following packages:

Spec. The source code for this specification.

Multisig. Onchain scripts, transaction building code, and blockchain queries for the L1 multisig
regime (§ 1).

Plutus. Onchain scripts, transaction building code, and blockchain queries for the L1 rule-based
regime (§ 2).

Ledger. L2 ledger state and transitions (§ 3).

Blocks. L2 block creation, validation, and effects (§ 4).

Head state. L2 head state, storage, and queries. (§ 4.1).
Consensus. L2 consensus protocol messages, handlers, API (§ 5).
Node. Hydrozoa node software and interface (§ C.3).

Infra. Development environment, CI/CD, deployment scripts, and configurations.

C.2 Onchain script interdependencies

Hydrozoa’s L1 protocol has the following onchain script interdependencies:
Native script A native script parametrized on the list of peers (§ 1).
Native minting policy. A minting policy controlled by the native script (§ 1.1).
Treasury script. A Plutus-based spending validator parametrized on the native script (§ 2.4).
Tallying script. A Plutus-based staking validator parametrized on the native script (§ 2.3).

Voting script. A Plutus-based spending validator parametrized on the native script and the
tallying script (§ 2.3).

48
Branch: (None) @ c28633a * Commit date: 2025-10-16

C.3 Processes and components

In order to operate a Hydrozoa head, each peer will need to run the following processes/software:

Hydrozoa UL. A web-based or terminal-based interface for a user to initialize, fund, and interact
with a Hydrozoa head.

Hydrozoa node. An executable that manages the peer’s L2 state for the head and facilitates the
peer’s participation in the L2 consensus protocol. It provides a backend API for the Hydrozoa
UT’s interactions with the head.

User wallet. A wallet that holds the user’s cryptographic keys for manual transaction signing.
User wallet signatures are needed in the head’s initialization and deposit transactions, which
bring funds into the head.

Cardano node (L1). A Cardano node synchronized to the chain tip of the target L1 network
(e.g., Cardano mainnet). It is the underlying source of events about the head’s L1 state, and
the Hydrozoa node submits all L1 transactions to it.

Blockchain indexer (L1). A blockchain indexer (e.g., Blockfrost, Ogmios/Kupo) that indexes the
events from the Cardano node. It responds to the Hydrozoa node’s queries about the head’s
L1 state.

49
Branch: (None) @ c28633a * Commit date: 2025-10-16

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

Alessandro Konrad and Thomas Vellekoop. 2022. CIP-67: Asset Name Label Registry. https:
//github.com/cardano-foundation/CIPs/tree/master/CIP-0067

Philip DiSarro. 2024. CIP-112: Observe Script Type. https://github.com/cardano-
foundation/CIPs/tree/master/CIP-0112

fallen-icarus. 2025. Cardano Swaps P2P DeFi Protocol. https://github.com/fallen-
icarus/cardano-swaps

George Flerovsky. 2024. Catalyst Milestones for the Hydrozoa Fund 13 Project. https:
//milestones.projectcatalyst.io/projects/1200059

George Flerovsky and Philip Disarro. 2024. Cardano Layer 2 Interoperability: Midgard and
Hydrozoa. https://github.com/GeorgeFlerovsky/interop-midgard-hydrozoa

George Flerovsky and Ilia Rodionov. 2025. Hydrozoa Repository (Github). https://github.
com/cardano-hydrozoa/hydrozoa

IntersectMBO. 2025. Cardano Ledger v1.17.4.0: Conway-era, Plomin Hardfork. https://
github.com/IntersectMBO/cardano-ledger/tree/cardano-ledger-conway-1.17.4.0

I0G. 2025. Exclude Phantom Tokens from Snapshots (Github Issue #358). Cardano Scaling.
https://github.com/cardano-scaling/hydra/issues/358

D. Mills, J. Martin, J. Burbank, and W. Kasch. 2010. Network Time Protocol (4.2.8). https:
//www.ntp.org/documentation/4.2.8-series/

Sebastian Nagel, Sasha Bogicevic, Franco Testagrossa, and Daniel Firth. 2024. Hydra HeadV1
Specification: Coordinated Head Protocol. (2024). https://hydra.family/head-protocol/
docs/dev/specification

50
Branch: (None) @ c28633a * Commit date: 2025-10-16

https://github.com/cardano-foundation/CIPs/tree/master/CIP-0067
https://github.com/cardano-foundation/CIPs/tree/master/CIP-0067
https://github.com/cardano-foundation/CIPs/tree/master/CIP-0112
https://github.com/cardano-foundation/CIPs/tree/master/CIP-0112
https://github.com/fallen-icarus/cardano-swaps
https://github.com/fallen-icarus/cardano-swaps
https://milestones.projectcatalyst.io/projects/1200059
https://milestones.projectcatalyst.io/projects/1200059
https://github.com/GeorgeFlerovsky/interop-midgard-hydrozoa
https://github.com/cardano-hydrozoa/hydrozoa
https://github.com/cardano-hydrozoa/hydrozoa
https://github.com/IntersectMBO/cardano-ledger/tree/cardano-ledger-conway-1.17.4.0
https://github.com/IntersectMBO/cardano-ledger/tree/cardano-ledger-conway-1.17.4.0
https://github.com/cardano-scaling/hydra/issues/358
https://www.ntp.org/documentation/4.2.8-series/
https://www.ntp.org/documentation/4.2.8-series/
https://hydra.family/head-protocol/docs/dev/specification
https://hydra.family/head-protocol/docs/dev/specification

	Overview
	L1 protocol
	L2 state
	L2 consensus protocol

	L1 multisig regime
	Utxo state
	Initialization
	Deposit
	Refund
	Settlement
	Finalization
	Rollout

	L1 rule-based regime
	Utxo state
	Treasury state
	Dispute state

	Fallback to rule-based regime
	Dispute resolution
	Vote
	Tally
	Resolve

	Treasury
	Resolve
	Withdraw
	Deinit

	L2 ledger
	Ledger rules
	Utxo set
	Transaction
	Withdrawal
	Genesis

	L2 blocks
	Head state
	Block creation
	Block validation
	Block effects
	Any block – L2 effect
	Minor block – L1 effect
	Major block – L1 effect
	Final block – L1 effect

	L2 consensus protocol
	Assumptions
	Setup
	Parameters (ReqParams / AckParams)
	Initialization (ReqInit / AckInit)

	Ledger requests
	Transaction (ReqTx)
	Withdrawal (ReqWithdrawal)

	Consensus on blocks
	Minor block (ReqMinor / AckMinor)
	Major block (ReqMajor / AckMajor1 / AckMajor2)
	Final block (ReqFinal / AckFinal1 / AckFinal2)

	Consensus on refunds
	Post-dated refund (ReqRefundLater / AckRefundLater)
	Immediate refund (ReqRefundNow / AckRefundNow)

	Future work
	Add/remove peers
	Minting on L2
	Observer scripts
	Alternative to withdraw-zero trick
	Eliminate post-dated transactions
	Fragmented treasury

	Hydrozoa network and L2 interoperability

	Deterministic rollout algorithm
	Settlement transaction
	Finalization transaction
	Rollout transactions

	Architecture
	Codebase
	Onchain script interdependencies
	Processes and components

	Bibilography

